

Overview of presentation

- Background
- Intro to MPEG-4 AVC (Part 10)
- Comparison with MPEG-2, MPEG-4 ASP
- Demonstrations

Overview of presentation

- Standard is still evolving
- Some of the information presented here may not be current, accurate or complete
- Readers should read the standard specification for accuracy and complete description

MPEG-4

 Coding of Audiovisual Objects and Multimedia contents

- Video, Graphics, Animations, Text, Audio, Speech

 Provides standardized technology and framework for the compression and distribution of multiple media types for various applications

MPEG-4 Parts

- Systems : ISO/IEC 14496-1
- Visual : ISO/IEC 14496-2 / Part 2
- Audio : ISO/IEC 14496-3
- Conformance : ISO/IEC 14496-4
- Reference Software : ISO/IEC 14496-5
- DMIF (Delivery Multimedia Integration Framework) : ISO/IEC 14496-6
- Software for MPEG-4 Tools : ISO/IEC 14496-7
- MPEG-4 on IP Framework : ISO/IEC 14496-8
- Visual: AVC (Advanced Video Coding), ISO/IEC 14496-10 / Part 10
 MPEG and ITU Joint Video Team (JVT)
- Transport of MPEG-4 AVC on MPEG-2 TS: ISO/IEC 13818 -1 /2000 Amendment 3

MPEG-4 Parts

Modular

Parts - Visual, Audio, System etc – can be selected and used individually

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

6

MPEG-4 Visual Parts

• Visual - Part 2 (ISO/IEC 14496-2)

- Video
 - Coding of Natural Video
- SNHC (Synthetic-Natural Hybrid Coding)
 - Facial & Body Animation
 - Graphics Coding
- Texture Coding
- Sprite Coding

• Visual – Part 10 (ISO/IEC 14496 – 10)

- AVC (Advanced Video Coding)
- JVT (Joint Video Team), ISO + ITU-T
- Focused solely on coding of Natural Video
- Very high coding efficiency

MPEG-4 Advanced Video Coding (AVC)

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

MPEG-4 Advanced Video Coding (AVC)

- Working Draft 2 January 2002
- Committee Draft (CD) May 2002
- Final CD July 2002
- FDIS (Final Draft International Standard) December 2002

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

10

Video Coding Standards

• MPEG-2

- State of the Art, 1994

• MPEG-4 Video, Part 2

- ASP (Advanced Simple Profile)
- State of the Art, 1999
- ~ 1.5x coding gain (on average)

• MPEG-4 AVC, Part 10

- State of the Art, 2002
- More than 2x coding gain over MPEG-2 (on average)
- Final Draft Standard in Dec 2002

MPEG-4 AVC

Working Draft 2, Rev 8 based description

MPEG-4 AVC

- NAL (Network Adaptation Layer)
- VCL (Video Coding Layer)

Video Hierarchy

- Sequence, consisting of
- Pictures, consisting of
- Slices, consisting of
- Macroblocks, consisting of
- Blocks, consisting of
- Pixels / Pels

Video Hierarchy - Picture

- **4:4:4**
- **4:2:2**
- **4:2:0**

Progressively Scanned

- Frame

Interlaced Scanned

- 1 Frame consists of 2 fields

Video Hierarchy - Picture, MB, Block

MPEG-4 AVC (WD2 Rev 8)

- Motion compensated DCT-like transform
- I, P, B, SP, SI
- Multiple reference frames
- Variable block size 7 Block Patterns
 - 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
- Up to 16 MVs per MB
- 4x4 Integer DCT like transform
- Improved Intra Prediction
- Deblocking filter
- Interlace Coding Tools
- Universal VLC
- Arithmetic Coding (CABAC)
- 1/4th Pel, 1/8th Pel Interpolation

. . .

MPEG-2, MPEG-4 ASP, MPEG-4 AVC (WD2) Mobile & Calendar (CIF)

Note: PSNR at a given bit rate is encoder dependent and will vary from one encoder to another

Ajay Luthra WEMP4. June 25. 2002

Video Encoding Block Diagram

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

Basic Frame Types

Intra (I) Frame

- Spatial only prediction (No Temporal prediction)
- Segmented into Macro Blocks (MBs) each of size 16x16 pixels
- MB is segmented into 16 blocks each of size 4x4 pixels

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

I-frame coding: Prediction (Spatial)

- MB (16x16) based
- Block (4x4) based

25

I-frame coding: Prediction (Luma)

• MB (16x16) based

- Mode 0 (Vertical)
 - Pred (I,j) = P(i,-1) I.i = 0. ... 15
- Mode 1 (Horizontal)
 - Pred (I,j) = P(-1,j) I,j = 0, ... 15
- Mode 2 (DC) • Pred(i,j) = $(\sum_{i=0}^{15} (P(-1,i) + P(i,-1)))/32$ i,j=0..15,

P(-1,j)

XXXXXXXXXXXXXXXXXXX

MOTOROLA

Signaling the mode

- Trio
 - I-mode: 0,1,2,3
 - Coded Block Pattern for Chroma (no chroma, non-zero 2x2 but no chroma AC, 2x2+chroma)
 - AC Coeff present flag: 0 => no AC in the 16x16

Predict (spatially) a,b ... p from A,B ... Q

• Block (4x4) based

9 Prediction Modes (directions)

- Mode 0 (DC Prediction)
 - Predict all pixels from (A+B+C+D+I+J+K+L)/8
- Mode 1 (Vertical Prediction)
 - a,e,i,m Predicted from A; b,f,j,n from B ...
- Mode 2 (Horizontal)
 - a,b,c,d from I; e,f,g,h from J ...
- Mode 3 (Diagonal Down-Right)
 - a,f,k,p from (A+2Q+I+2)/4
 - e,j,o from (Q+2I+j+2)/4 ...
- Mode 8

Z

Block (4x4) based

- Flagging the prediction mode of each block will need too many bits
- To save bits, correlation among adjacent blocks is exploited
- For example, if A and B used mode 2, then C will have the following prediction modes in decreasing probability :
 287106435

• Block (4x4) based - Prediction Correlation

Index	B/A	Outside	0	1	2	3
0a	Outside	0	01	10		
1a	0	02	021648573	125630487	021876543	021358647
2a	1		102654387	162530487	120657483	102536487
3a	2	20	280174365	217683504	287106435	281035764
4a	3		201385476	125368470	208137546	325814670
5a	4		201467835	162045873	204178635	420615837
6a	5		015263847	152638407	201584673	531286407
7a	6		016247583	160245738	206147853	160245837
8a	7		270148635	217608543	278105463	270154863
9a	8		280173456	127834560	287104365	283510764

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

30

Block (4x4) based

- Instead of sending information about mode directly, the index number is sent, e.g. number 1 will signify that mode 8 out of 2 8 7 1 0 6 4 3 5 was selected when A and B used the mode 2
- To further compress the information, probability numbers of two adjacent blocks are sent together (see table on the next slide) in the following order

Code	P0,P1	Code	P0,P1	Code	P0,P1	Code	P0,P1
0	0,0	21	2,3	41	2,6	61	6,5
1	0,1	22	3,2	42	6,2	62	4,7
2	1,0	23	1,5	43	3,5	63	7,4
3	1,1	24	5,1	44	5,3	64	3,8
4	0,2	25	2,4	45	1,8	65	8,3
5	2,0	26	4,2	46	8,1	66	4,8
6	0,3	27	3,3	47	2,7	67	8,4
7	3,0	28	0,7	48	7,2	68	5,7
8	1,2	29	7,0	49	4,5	69	7,5
9	2,1	30	1,6	50	5,4	70	6,6
10	0,4	31	6,1	51	3,6	71	6,7
11	4,0	32	2,5	52	6,3	72	6,7
12	3,1	33	5,2	53	2,8	73	5,8
13	1,3	34	3,4	54	8,2	74	8,5
14	0,5	35	4,3	55	4,6	75	6,8
15	5,0	36	0,8	56	6,4	76	8,6
16	2,2	37	8,0	57	5,5	77	7,7
17	1,4	38	1,7	58	3,7	78	7,8
18	4,1	39	7,1	59	7,3	79	8,7
19	0,6	40	4,4	60	5,6	80	8,8
20	6,0						

Ajay Luthra WEMP4, June 25, 2002

Only one mode

- 8x8 Chroma macroblock (4:2:0) consisting of
 - 4, 4x4 blocks ABCD
- 4 Prediction cases depending upon whether S0, S1, S2 or S3 are inside or outside
 - e.g., if all inside
 - A= (S0+S2+4)/8
 - B= (S1+2)/4
 - C= (S3+2)/4
 - D= (S1+S3+4)/8

S0,S1,S2 and S3 are the sums of

4 neighboring samples

I-frame coding: Transform

I-frame coding: Transform

- First step for Residue coding
 - Block (4x4) based

$$Y = AXA^{T} = \begin{bmatrix} a & a & a & a \\ b & c & -c & -b \\ a & -a & -a & a \\ c & -b & b & -c \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{bmatrix} \begin{bmatrix} a & b & a & c \\ a & c & -a & -b \\ a & -c & -a & b \\ a & -b & a & -c \end{bmatrix}$$

DCT Transform

$$a = 1/2$$

$$b = \sqrt{1/2} \times \cos(p/8) = 0.653281482438...$$

$$c = \sqrt{1/2} \times \cos(3p/8) = 0.382683432365...$$

I-frame coding: Transform

- As coefficients get quantized after transform, why to maintain such a long precision
- Why DCT?
 - Compact coefficients
 - Orthogonal bases

DCT Transform

Compact Coefficients

DCT Transform

Orthogonal Bases

DCT Transform

Non Orthogonal Bases

40

I-frame coding: Transform

First step for Residue coding

- Block (4x4) based

$$Y = AXA^{T} = \begin{bmatrix} a & a & a & a \\ b & c & -c & -b \\ a & -a & -a & a \\ c & -b & b & -c \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{bmatrix} \begin{bmatrix} a & b & a & c \\ a & c & -a & -b \\ a & -c & -a & b \\ a & -b & a & -c \end{bmatrix}$$

DCT Transform

$$a = 1/2$$

$$b = \sqrt{1/2} \times \cos(p/8) = 0.653281482438...$$

$$c = \sqrt{1/2} \times \cos(3p/8) = 0.382683432365...$$

$$Y = BCXC^{T}B = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & b \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & d & -d & -1 \\ 1 & -1 & -1 & 1 \\ d & -1 & 1 & -d \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & d \\ 1 & d & -1 & -1 \\ 1 & -1 & 1 & -d \end{bmatrix} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{bmatrix}$$
$$d = c/b$$
$$Y = (CXC^{T}) \otimes E = \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & d \\ 1 & d & -1 & -1 \\ 1 & -d & -1 & 1 \\ 1 & -d & -1 & 1 \\ 1 & -d & -1 & 1 \\ d & -1 & 1 & -d \end{bmatrix} \bigotimes \begin{bmatrix} a^{2} & ab & a^{2} & ab \\ ab & b^{2} & ab & b^{2} \\ a^{2} & ab & a^{2} & ab \\ ab & b^{2} & ab & b^{2} \\ ab & b^{2} & ab & b^{2} \end{bmatrix}$$

$$\mathbf{Y} \otimes \mathbf{Q} = \mathbf{C}\mathbf{X}\mathbf{C} \overset{T}{\otimes} \mathbf{E} \otimes \mathbf{Q}$$
$$= \mathbf{C}\mathbf{X}\mathbf{C} \overset{T}{\otimes} \mathbf{Q}'$$

- C is now the new Transform
- Element d in Matrix C = $\sqrt{2}$ 1 = 0.41421356237...
- Only 1 non-trivial element
- Round it to 7/16, 3/8 or $\frac{1}{2}$
- Simplest choice, $\frac{1}{2}$, was picked
- Orthogonality of the bases vectors?

• To maintain orthogonality of original A Matrix, b now needs to be modified:

$$b = \sqrt{\frac{1}{2(1+d^2)}} = \sqrt{2/5}$$

$$Y = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \frac{1}{2} & -\frac{1}{2} & -1 \\ 1 & -1 & -1 & 1 \\ \frac{1}{2} & -1 & 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x_{00} & x_{01} & x_{02} & x_{03} \\ x_{10} & x_{11} & x_{12} & x_{13} \\ x_{20} & x_{21} & x_{22} & x_{23} \\ x_{30} & x_{31} & x_{32} & x_{33} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & \frac{1}{2} \\ 1 & \frac{1}{2} & -1 & -1 \\ 1 & -\frac{1}{2} & -1 & 1 \\ 1 & -1 & 1 & -\frac{1}{2} \end{bmatrix} \\ \otimes \begin{bmatrix} a^{2} & ab & a^{2} & ab \\ ab & b^{2} & ab & b^{2} \\ a^{2} & ab & a^{2} & ab \\ ab & b^{2} & ab & b^{2} \end{bmatrix}$$

/

• To avoid truncation error due to dividing by 2, every other row of the first matrix and every other row of the second (transposed) matrix is multiplied by 2 $Y = (CXC^T) \otimes E_{forw} =$

$$\begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_{00} & x_{01} & x_{02} & x_{03} \\ x_{10} & x_{11} & x_{12} & x_{13} \\ x_{20} & x_{21} & x_{22} & x_{23} \\ x_{30} & x_{31} & x_{32} & x_{33} \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 \\ 1 & -1 & -1 & 2 \\ 1 & -2 & 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} a^2 & \frac{ab}{2} & a^2 & \frac{ab}{2} \\ \frac{ab}{2} & \frac{b^2}{4} & \frac{ab}{2} & \frac{b^2}{4} \\ a^2 & \frac{ab}{2} & a^2 & \frac{ab}{2} \\ \frac{ab}{2} & \frac{b^2}{4} & \frac{ab}{2} & \frac{b^2}{4} \\ \frac{ab}{2} & \frac{b^2}{4} & \frac{ab}{2} & \frac{b^2}{4} \\ \frac{ab}{2} & \frac{b^2}{4} & \frac{ab}{2} & \frac{b^2}{4} \end{bmatrix}$$

• This C replaces DCT and is the *Transform* matrix and is used in all (except 16x16 Intra DC) the 4x4 Block transforms

I-frame coding: Transform (Luma DC)

• Intra 16x16

 – 16 DC coefficients of 16 blocks are further transformed using Hadamard transform

// => rounding to the nearest integer

I-frame coding: Transform (Chroma DC)

 8x8 MB – 4, 4x4 blocks for each chroma component

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

46

I-frame coding: Transform (Chroma DC)

Chroma DC Transform

$$Y = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} DC_{00} & DC_{01} \\ DC_{10} & DC_{11} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

47

I-frame coding:Transform (Chroma)

- Coded Block Pattern (CBP) Information for Chroma
 - Pattern to indicate which blocks in 8x8 Chroma MB have coefficients
 - Flag called nc
 - nc = 0; no chrominance coefficients at all
 - nc = 1; non-zero 2x2 transform coefficients and all AC = 0
 - nc = 2; non-zero 2x2 and at least 1 non-zero AC coeff.

I-frame coding: Prediction (Luma)

Signaling the mode

- Trio
 - I-mode: 0,1,2,3
 - Coded Block Pattern for Chroma (no chroma, non-zero 2x2 but no chroma AC, 2x2+chroma)
 - AC Coeff present flag: 0 => no AC in the 16x16

I-frame coding: Quantization

I-frame coding: Quantization (WD2 Rev 8)

• Coefficients except DC Luma and Chroma (see note below) $Y_Q(i,j) = [Y(i,j) \cdot Q((QP+12)\%6, i, j) + f]/2^{15+(QP+12)/6}, \quad i, j = 0,...,3$

where,

➤ a % b implies remainder of a divided by b (both positive integers)

$$|f| = \begin{cases} (2 \cdot 2^{15 + (QP+12)/6})/6 \\ & Q(m,i,j) = M_{m,0} \text{ for } (i,j) = \\ \{(0,0),(0,2),(2,0),(2,2)\}, \\ Q(m,i,j) = M_{m,1} \text{ for } (i,j) = \\ \{(1,1),(1,3),(3,1),(3,3)\}, \\ Q(m,i,j) = M_{m,2} \text{ otherwise;} \end{cases} M = \begin{bmatrix} 13107 & 5243 & 8066 \\ 11916 & 4660 & 7490 \\ 10082 & 4194 & 6554 \\ 9362 & 3647 & 5825 \\ 8192 & 3355 & 5243 \\ 7282 & 2893 & 4559 \end{bmatrix}$$

Note: In CD it was changed: QP+12 was replaced by new QP with appropriate adjustment

product or service names are the property of their respective owners. © Motorola, Inc. 2002

51

I-frame cod	ing: Quantiza	tion	/		52
$Q(m,i,j) = M_{m,0}$ $\{(0,0),(0,2),(2,0),$	for $(i,j) =$ 2)}, for $(i,j) = M =$ 3)}, rwise;	13107 11916 10082 9362 8192 7282	 5243 4660 4194 3647 3355 2893 	8066 7490 6554 5825 5243 4559	
Q(0,i,j) =	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	066 243 066 243			

I-frame coding: Quantization

13107806613107806680665243806652431310780661310780668066524380665243

 $\succ \quad Q(0,i,j) =$ $Y = (CXC^{T}) \otimes E_{forw} =$

a = 1/2; b = 0.65328

I-frame coding: Quantization (WD2 Rev8)

• DC Luma

 $Y_Q(i,j) = [Y(i,j) \cdot Q((QP+12)\%6,0,0) + 2f]/2^{16+(QP+12)/6}, \quad i,j = 0,...,3$

• DC Chroma

 $Y_Q(i,j) = [Y(i,j) \cdot Q((QP+12)\%6,0,0) + 2f]/2^{16+(QP+12)/6}, \quad i,j = 0,...,3$

In CD it was changed: QP+12 was replaced by new QP with appropriate adjustment to the QP range.

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

54

I-frame coding: Quantization

Change in Quantization

 $- QP_{y} = (QP_{y} + delta_qp + 52) \% 52; -26 < delta_qp < 25$

I-frame coding: Quantization (WD2Rev8)

Chroma Quantization

- QPchroma = QPluma if QPluma < 17
- QPluma: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

QPchroma: 17 17 18 19 20 20 21 22 22 23 23 24 24 25 25 26 26 26 27 27 27 27

Note: Qp range was changed in CD

I-frame coding: Coefficient Scan

I-frame coding: Coefficient Scanning 58 (WD2Rev8)

• Zig-Zag Scan :

Simple

Double

Note: Double scan was dropped in CD

- Intra 16x16
 - First scan through the 16 DC Transform coefficient (No CBP)
 - Then AC coefficients (if present), starting at the second position.

I-frame code: VLC

I-frame coding: UVLC (WD2Rev8)

Code No.	RU N	MB_Tyj	pe	8x8 mode	MVD D- QUAN	CBP		Tcoeff_chroma_DC		Tcoeff_chroma_AC Tcoeff_luma Simple scan		Tcoeff_luma Double scan	
		Intra	Inter			Int ra	Int er	Level	Run	Level	Run	Lev el	Ru n
0	0	Intra 4x4	16x16	8x8	0	47	0	EOB	-	EOB	-	EO B	-
1	1	0,0,0	16x8	8x4	1	31	16	1	0	1	0	1	0
2	2	1,0,0	8x16	4x8	-1	15	1	-1	0	-1	0	-1	0
3	3	2,0,0	8x8	4x4	2	0	2	2	0	1	1	1	1
4	4	3,0,0	8x8 (ref=0)	Intra	-2	23	4	-2	0	-1	1	-1	1
5	5	0,1,0	Intra		3	27	8	1	1	1	2	2	0
6	6	1,1,0	^{4X4} 0,0,0 ²		-3	29	32	-1	1	-1	2	-2	0
7	7	2,1,0	1,0,0		4	30	3	3	0	2	0	1	2
8	8	3,1,0	2,0,0		-4	7	5	-3	0	-2	0	-1	2
9	9	0,2,0	3,0,0		5	11	10	2	1	1	3	3	0
10	10	1,2,0	0,1,0		-5	13	12	-2	1	-1	3	-3	0

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

61

I-frame coding: UVLC

Code_number	Code word							
0				1				
1			0	1	0			
2			0	1	1			
3		0	0	1	0	0		
4		0	0	1	0	1		
5		0	0	1	1	0		
6		0	0	1	1	1		
7	0	0	0	1	0	0	0	
8	0	0	0	1	0	0	1	
9	0	0	0	1	0	1	0	
10	0	0	0	1	0	1	1	
	•	•	•	•	•	•	•	

63

P, B frame coding

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

P, B-frame Coding

- Temporal Prediction (Motion Estimation)

P-frame coding: Motion Estimation

Macro Block - 16x16

- Prediction block structure
 - 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4

P-frame coding: Motion Vector Coding

- Median Prediction (except for 16x8 and 8x16 modes)
- Median of A, B and C (normally)
 - Exceptions
- A,B,C and D can be from different reference frames

P-frame coding: Motion Vector Coding

- Directional Segmentation Prediction
 - 16x8 and 8x16

68

P-frame coding: Chroma

- Chroma vectors half of Luma vectors (4:2:0 resolution)
 - Luma vector corresponding to 8x16 Luma block will apply to 4x8 Chroma block, so on

P-frame coding: Motion Vector Coding

69

- Pixel Resolution
 - 1/4th Pel

Quarter Pixel Interpolation: Luma

Α	d	b ^h	d	A
e	h	f	h	
b ^v	g	c ^m	by	b ^v
e	h	f	1	
A		b ^h		A

A integer Pixel Locations

Quarter Pel Interpolation: Luma

Calculate Half Pel values

- use 6 tap filter {1, -5, 20, 20, -5, 1} to get b
- $b^{h} = clip1(((b+16)>>5))$
- c from b values using the 6 tap filter
- $c^{m} = clip1(((c+512)>>10))$
- Average of Integer and Half Pel values to find d,e,f,g
 - e.g. d = (A+b^h)>>1
- h = (b^h+b^v)>>1 (diagonal direction averaging)
- $i = (A_1 + A_2 + A_3 + A_4 + 2) >> 2$

clip3(a, b, c) = a if c<a, b if c>b, otherwise c clip1(c) = clip3(0, 255, c) = 0 if c<0, 255 if c>255, otherwise c

Quarter Pixel Interpolation: Chroma

$$v = ((s - d^{x})(s - d^{y})A + d^{x}(s - d^{y})B + (s - d^{x})d^{y}C + d^{x}d^{y}D + s^{2}/2)/s^{2}$$

A,B,C,D are the integer position values s = 8, d^x and d^y are fractional positions in units of 1/8th sample

P-frame coding: CBP

- CBPY (Coded Block Pattern for Y)
 - Flags which 4 8x8 blocks contain coefficients

CBP (Coded Block Pattern)

- CBP = CBPY + 16.nc
 - nc = 0,1 and 2
 - nc = 0 : No Chrominance Coefficient
 - nc = 1 : non-zero 2x2 Chroma Tx coefficients, All Chroma AC coefficients are 0 (no EOB for Chroma AC sent)

nc = 2 : other

 4 LSBs of CBP contain information about which of 4 8x8 Luma blocks contain non-zero coefficients

B-frame coding: Motion Vector Coding

74

Modes

- Direct, forward, backward, bi-directional and intra
- 16x16, 8x16, 16x8, 8x8, 4x8, 8x4, 4x4

B-frame coding: Motion Vector Coding

Direct Mode

- No MV data is transmitted
- Same block structure as co-located MB in temporally subsequent picture
- MVs are computed as scaled version of corresponding MV of the co-located MB

B-frame coding: Motion Vector Coding

Direct Mode

Deblocking Filter

Filtering done on an MB basis

- 3 internal vertical edges then 3 internal horizontal edges
- Left edge, Top edge of MB after corresponding left and top MBs are reconstructed

intelligence

vervwhere

$$p_3 \quad p_2 \quad p_1 \quad p_0 \quad q_0 \quad q_1 \quad q_2 \quad q_3$$

8 samples across the block boundary

Filtering if $Bs \neq 0$ && $|p_0 - q_0| < \alpha$ && $|p_1 - p_0| < \beta$ && $|q_1 - q_0| < \beta$

	QP _{av}																									
	- 1 2	- 1 1	- 1 0	- 9	- 8	- 7	- 6	- 5	- 4	- 3	-2	- 1	0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3
α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	5	6	7	9
β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	4	4	4

		QP _{av}																								
	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	3 3	3 4	3 5	3 6	3 7	3 8	3 9
α	1 0	1 2	1 4	1 7	2 0	2 4	2 8	33	3 9	46	5 5	6 5	7 6	9 0	1 0 6	1 2 6	1 4 8	1 7 5	2 0 7	2 4 5	2 5 5	2 5 5	2 5 5	2 5 5	2 5 5	2 5 5
β	6	6	7	7	8	8	9	9	1 0	1 0	1	1	1 2	1 2	1 3	1 3	1 4	1 4	1 5	1 5	1 6	1 6	1 7	1 7	1 8	1 8

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

- Filtering of Edges with Bs < 4
- Filtering of Edges with Bs = 4

Content dependent filtering: Bs < 4

$$\Delta = \operatorname{clip3}(-C, C, (((q_0 - p_0) << 2 + (p_1 - q_1) + 4) >> 3))$$

$$P_0 = \operatorname{clip1}(p_0 + \Delta)$$

$$Q_0 = \operatorname{clip1}(q_0 - \Delta)$$

 $\begin{array}{l} a_{p} = |p_{2} - p_{0}| \\ a_{q} = |q_{2} - q_{0}| \end{array}$

If $a_p < \beta$ for a luminance edge, a filtered sample P_I shall be produced by

$$P_1 = p_1 + \text{clip3}(-C0, C0, (p_2 + P_0 - 2*p_1) >> 1)$$

If $a_a < \beta$ for a luminance edge, a filtered sample Q_I shall be produced by

$$Q_1 = q_1 + \text{clip3}(-C0, C0, (q_2 + Q_0 - 2^*q_1) >> 1)$$

Value of Clipping Parameter

													QI	P _{av}												
	- 1 2	- 1 1	- 1 0	- 9	- 8	- 7	- 6	- 5	- 4	-3	-2	- 1	0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3
Bs = 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Bs = 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Bs = 3 or 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
													QI	P _{av}												
	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	23	2 4	2 5	26	2 7	2 8	2 9	3 0	3	3 2	33	3	3 5	3	3 7	3	3 9
Bs = 1	1	1	1	1	1	1	1	2	2	2	2	3	3	3	4	4	4	5	6	6	7	8	9	1 0	1 1	1 3
Bs = 2	1	1	1	1	1	2	2	2	2	3	3	3	4	4	5	5	6	7	8	8	1 0	1 1	1 2	1 3	1 5	1 7
Bs = 3 or 4	1	2	2	2	2	3	3	3	4	4	4	5	6	6	7	8	9	1 0	1 1	1 3	1 4	1 6	1 8	2 0	2 3	2 5

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

83

Content Dependent Filtering: Bs=4 (WD2 Rev8)

• If (Bs == 4) && ($a_p < \beta$) && ($a_q < \beta$) && (1 < | $p_0 - q_0$ | < ($QP_{av} >> 2$))

$$-P_{0} = (p_{2} + 2^{*}p_{1} + 2^{*}p_{0} + 2^{*}q_{0} + q_{1} + 4) >> 3$$

$$-P_{1} = (p_{3} + 2^{*}p_{2} + 2^{*}p_{1} + 2^{*}p_{0} + q_{0} + 4) >> 3$$

$$-P_{2} = (2^{*}p_{3} + 3^{*}p_{2} + p_{1} + p_{0} + q_{0} + 4) >> 3 \text{ (Luma)}$$

$$-Q_{0} = (p_{1} + 2^{*}p_{0} + 2^{*}q_{0} + 2^{*}q_{1} + q_{2} + 4) >> 3$$

$$-Q_{1} = (p_{0} + 2^{*}q_{0} + 2^{*}q_{1} + 2^{*}q_{2} + q_{3} + 4) >> 3$$

$$-Q_{2} = (2^{*}q_{3} + 3^{*}q_{2} + q_{1} + q_{0} + p_{0} + 4) >> 3 \text{ (Luma)}$$

Note: Some changes were made in CD

84

Interlaced Video

Ajay Luthra WEMP4, June 25, 2002

Interlaced Video

- Adaptive Field Frame Switching
 - Picture layer
- E.g. Direct Mode

WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

Ajay Luthra

Arithmetic Coding

Context-based Adaptive Binary Arithmetic Coding (CABAC)

MPEG-4 AVC – Committee Draft (CD)

Highlights of some of the changes from WD-2 to CD

MPEG-4 CD changes highlights

- **Qp** values were shifted up by 12
- Bi-directional pictures were renamed as Bi-predictive and they can be used as reference
- Modification to de-blocking filter
- Flexible Macroblock Ordering (FMO)
- Adaptive Block Transform (ABT)
- Context Adaptive VLC (CAVLC) was added
- Improved CABAC
- Definition of Profiles and Levels
 - Baseline and Main Profiles

Flexible Macroblock Ordering (FMO)

- MBs not necessarily in raster scan order
- mb_allocation_map
 - assigns MBs to a slice group
 - maximum of 8 slice groups

Adaptive Block Transform (ABT)

- Inter Mode: transform block size adapts to the block size used for motion compensation
- Intra Mode
 - 8x8, 8x4, 4x8, 4,4
- Transform Matrix
- Coefficient Scanning
- De-blocking Filter
- VLC Tables
- CABAC

- Coding and decoding of transform coefficients
- String of coefficients at the high frequencies at +- 1
- Parameter Num-Trail number of coefficients and Trailing 1s (T1s); T1 = 0,1,2,3
- Coefficients other than T1s Level information is coded
- For decoding of Coefficient data (both Level and Run) scanning is done in reverse order
 - In Level information, signs of T1s are decoded first (in reverse order) then the Level Information
 - Similarly Run information

Coding Flow

– Num of Coeff + T1 -> Sign T1 -> Level -> Total Zeros -> Run

• 3 + 1 (Chroma DC) tables; e.g. VLC0

NumCoef\T1s	0	1	2	3
0	1	-	-	-
1	000011	01	-	-
2	00000111	0001001	001	-
3	000001001	00000110	0001000	00011
4	000001000	000001011	00000101	000010
5	000000111	000001010	00000100	0001011
6	0000000111	000000110	0000001101	00010101
7	00000001001	0000000110	0000001100	00010100
8	00000001000	0000001001	00000001010	000000111
9	000000000111	00000001011	00000000101	000000101
10	000000000110	000000001101	000000001111	0000001000
11	0000000000011	000000001100	000000001110	00000000100
12	0000000000010	0000000000100	0000000000110	000000000101
13	0000000000101	0000000000111	00000000010001	0000000001001
14	00000000000011	00000000000010	00000000010000	000000000000011
15	00000000000000001	0000000000000011	0000000000000010	0000000000000101
16	000000000000000000000000000000000000000	00000000000001001	000000000000010001	000000000000010000

Pick 1 of the 3 table based on: •

Upper block (N _U)	Left block (N _L)	Ν	
Х	Х	$(N_{L}+N_{U})/2$	$N_L = No. of Coeff in block on left$
Х		N _U	$N_U = No. of Coeff in$ block above the
	Х	N_L	current block
		0	X => Block is available in the same slice
0 <= N < 2 : Num-VLC	0		
2 <= N < 4 : Num-VLC	21		
5 <= N < 8 : Num-VLC	22		
$N \ge 8:6$ bit FLC xxxx	xyy :		
xxxx = NumCoeff-1	, $yy = T1$. Exception: 00	0011 => NumCoeff =	= 0

• 4 Level Tables (Lev-VLCn)

Lev-VLC0

Code no	Code	Level $(\pm 1, \pm 2)$	Level ($\pm 2, \pm 3$)
0	1	1	2
1	01	-1	-2
2	001	2	3
3	000`	-2	-3
13	0000000000001	-7	-8
14-29	000000000000001xxxx	± 8 to ± 15	± 9 to ± 16
30->	0000000000000001xxxxxxxxx	±16 ->	±17 ->
	X		

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

- Table Selection (Adaptive)
- Adaptation based on Qp, Num of Coeff. and previously coded value
 - Inter and Intra with Qp >= 21
 - Rules
 - Intra with Qp < 21
 - If Num Coeff > 10 Rule1, else Rule 2
 - If VLC1 and |Level| > 3 Rule 3
 - If VLC >= VLC2 Rule 5

Adaptation Rules

Inter and intra with QP >= 21

First coefficient with VLC0. Next VLC1.

Increase VLC by one (up to 2) if |Level|> 3

Intra with QP < 21

if (number of coefficients > 10)

First coefficient with VLC1. Next VLC2. else

First coefficient with VLC0. Next VLC1. if (vlc == VLC1) change to VLC2 if |Level|> 3. if (vlc >= VLC2) increase vlc by one (up to 4) if |Level| > 5 The same procedure is used for chroma AC and DC coefficient levels.

Run Decoding

- Total Zeros
 - Sum of all zeros located before the last non-zero coeff.
 - E.g. 0030040000201000, Total Zeros is 2+2+4+1 = 9
 - Num Coeff + Total Zeros tables
- Run before each coeff
 - VLC Table

CABAC (Context-based Adaptive Binary Arithmetic Coding)

- Estimates of conditional Probability of symbols
- Arithmetic Codes (non-integer bits / symbol, hence more efficient)
- Adaptive (Adapt to non-stationary symbol statistics)

CABAC

Context modeling

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other

product or service names are the property of their respective owners. © Motorola, Inc. 2002.

CABAC

Binarization

- E.g. Macroblock modes in P-slices

Code Number	Macroblock Mode	Binarization
0		
1	SKIP	0
2	16x16	1000
3	16x8	1011
4	8x16	1010
5 (VLC only)	8x8 (split)	1001
6	8x8 (split, all ref=0)	
7	Intra4x4	110
	Intra16x16 bin	111
		1234

Ajay Luthra WEMP4, June 25, 2002

CABAC

Table-based Arithmetic Coding

- Arithmetic coding
 - Recursive interval subdivision
 - p(0) and 1 p(0) ratio
 - Most Probable Symbol (MPS) and Least Probable Symbol (LPS)
 - After encoding a decision, prob. estimate is updated
 - Table for Prob. transition and MPS/LPS switch

Initialization

- R set to 0x8000

MPEG-4 AVC - Profiles & Levels

- Large number of tools
- Wide range of applications

- All tools are not needed for a given application
- Implementing all the tools will make codecs unnecessarily very expensive

MPEG-4

Profiles

 Based on needs of different classes of applications, within each part a subset of tools is defined to form a profile

Levels

- Within each profile a level of performance is defined to constrain the processing power and memory requirement on real time codecs
- Defines maximum picture size, compressed bit rate, frame rate etc.

MPEG-4 AVC Profiles 60,000 ft view

Ajay Luthra WEMP4, June 25, 2002

MPEG-4 AVC - Profiles and Levels (Under Consideration)

- Profiles
 - Baseline
 - Main
- Levels
 - Major: QCIF, CIF, ITU-R 601 (SDTV), HDTV

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

107

MPEG-4 AVC - Profiles

(Under Consideration)

	Baseline	Main
I and P Pictures	X	X
De-blocking filter	X	X
1/4 Pel Motion Comp	X	X
Var. Block size (16x16 to 4x4)	X	X
Interlaced Coding	X	X
Entropy based VLD	X	X
Flex. Macroblock Ordering	X	X
B - Picture		X
CABAC		X
Adaptive Block Transform		X

MPEG-4 AVC - Levels

(Under Consideration)

• Level 1: QCIF @ 15frames/sec

- + Level 1.1: QCIF @ 30 frames/sec, CIF @7.5 frames/sec
- + Level 1.2: CIF @ 15 frames/sec

Level 2: CIF @ 30 frames/sec

- + Level 2.1: HHR @ 25 or 30 frames/sec
- + Level 2.2: SDTV @ 15 frames/sec

Level 3: SDTV

- + Level 3.1: 1280x720x30p, SVGA @ 50+ frames/sec
- + Level 3.2: 1280x720x60p,
- Level 4: HDTV: 1920x1080x60i, 1280x720x60p, 2kx1k @ 30 frames/sec
- Level 5: SHDTV ?: 1920x1080x60p, 2kx1k @ 60fps

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

MPEG-2, MPEG-4 ASP, MPEG-4 AVC (WD2) Mobile & Calendar (CIF)

Note: PSNR at a given bit rate is encoder dependent and will vary from one encoder to another

Ajay Luthra WEMP4, June 25, 2002

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

MPEG-2, MPEG-4 ASP, MPEG-4 AVC (WD2) BUS (CIF)

Note: PSNR at a given bit rate is encoder dependent and will vary from one encoder to another

111

MPEG-2, MPEG-4 ASP, MPEG-4 AVC (WD2) Mobile & Calendar (HHR)

Note: PSNR at a given bit rate is encoder dependent and will vary from one encoder to another

Note: PSNR at a given bit rate is encoder dependent and will vary from one encoder to another

~ % Bit rates required for the same PSNR (~ 32dB) (Normalization: MPEG-2 = 100%)

Note: PSNR at a given bit rate is encoder dependent and will vary from one encoder to another

Ajay Luthra WEMP4. June 25. 2002

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

Note: PSNR at a given bit rate is encoder dependent and will vary from one encoder to another

Ajay Luthra WEMP4. June 25. 2002

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

116

Demonstration

- MPEG-4 AVC vs MPEG-2
- MPEG-4 AVC vs MPEG-4 ASP

Ajay Luthra WEMP4, June 25, 2002 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

